Electroencephalogram paroxysmal theta characterizes cataplexy in mice and children

نویسندگان

  • Anne Vassalli
  • Jose M. Dellepiane
  • Yann Emmenegger
  • Sonia Jimenez
  • Stefano Vandi
  • Giuseppe Plazzi
  • Paul Franken
  • Mehdi Tafti
چکیده

Astute control of brain activity states is critical for adaptive behaviours and survival. In mammals and birds, electroencephalographic recordings reveal alternating states of wakefulness, slow wave sleep and paradoxical sleep (or rapid eye movement sleep). This control is profoundly impaired in narcolepsy with cataplexy, a disease resulting from the loss of orexin/hypocretin neurotransmitter signalling in the brain. Narcolepsy with cataplexy is characterized by irresistible bouts of sleep during the day, sleep fragmentation during the night and episodes of cataplexy, a sudden loss of muscle tone while awake and experiencing emotions. The neural mechanisms underlying cataplexy are unknown, but commonly thought to involve those of rapid eye movement–sleep atonia, and cataplexy typically is considered as a rapid eye movement sleep disorder. Here we reassess cataplexy in hypocretin (Hcrt, also known as orexin) gene knockout mice. Using a novel video/electroencephalogram doubleblind scoring method, we show that cataplexy is not a state per se, as believed previously, but a dynamic, multi-phased process involving a reproducible progression of states. A knockout-specific state and a stereotypical paroxysmal event were introduced to account for signals and electroencephalogram spectral characteristics not seen in wild-type littermates. Cataplexy almost invariably started with a brief phase of wake-like electroencephalogram, followed by a phase featuring high-amplitude irregular theta oscillations, defining an activity profile distinct from paradoxical sleep, referred to as cataplexy-associated state and in the course of which 1.5–2 s high-amplitude, highly regular, hypersynchronous paroxysmal theta bursts ( 7 Hz) occurred. In contrast to cataplexy onset, exit from cataplexy did not show a predictable sequence of activities. Altogether, these data contradict the hypothesis that cataplexy is a state similar to paradoxical sleep, even if long cataplexies may evolve into paradoxical sleep. Although not exclusive to overt cataplexy, cataplexy-associated state and hypersynchronous paroxysmal theta activities are highly enriched during cataplexy in hypocretin/orexin knockout mice. Their occurrence in an independent narcolepsy mouse model, the orexin/ataxin 3 transgenic mouse, undergoing loss of orexin neurons, was confirmed. Importantly, we document for the first time similar paroxysmal theta hypersynchronies ( 4 Hz) during cataplexy in narcoleptic children. Lastly, we show by deep recordings in mice that the cataplexy-associated state and hypersynchronous paroxysmal theta activities are independent of hippocampal theta and involve the frontal cortex. Cataplexy hypersynchronous paroxysmal theta bursts may represent medial prefrontal activity, associated in humans and rodents with reward-driven motor impulse, planning and conflict monitoring. doi:10.1093/brain/awt069 Brain 2013: 136; 1592–1608 | 1592

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symptoms of narcolepsy in children misinterpreted as epilepsy.

Differentiating an epileptic seizure from some other paroxysmal event is a common challenge in clinical practice. Many paroxysmal events mimic epileptic seizures and misdiagnosis can have disastrous consequences. Incorrectly identifying an event as an epileptic seizure can lead to unnecessary investigations and instigation of inappropriate treatment regimes. We report five patients referred to ...

متن کامل

Hypocretin (orexin) is critical in sustaining theta/gamma-rich waking behaviors that drive sleep need.

Hcrt gene inactivation in mice leads to behavioral state instability, abnormal transitions to paradoxical sleep, and cataplexy, hallmarks of narcolepsy. Sleep homeostasis is, however, considered unimpaired in patients and narcoleptic mice. We find that whereas Hcrtko/ko mice respond to 6-h sleep deprivation (SD) with a slow-wave sleep (SWS) EEG δ (1.0 to 4.0 Hz) power rebound like WT littermate...

متن کامل

Alterations of the electroencephalogram sub-bands amplitude during focal seizures in the pilocarpine model of epilepsy

Introduction: Temporal lobe epilepsy (TLE) is the most common and drug resistant epilepsy in adults. Due to behavioral, morphologic and electrographic similarities, pilocarpine model of epilepsy best resembles TLE. This study was aimed at determination of the changes in electroencephalogram (EEG) sub-bands amplitude during focal seizures in the pilocarpine model of epilepsy. Analysis of thes...

متن کامل

Cholinergic mechanisms in canine narcolepsy--I. Modulation of cataplexy via local drug administration into the pontine reticular formation.

Cataplexy in the narcoleptic canine has been shown to increase after systemic administration of cholinergic agonists. Furthermore, the number of cholinergic receptors in the pontine reticular formation of narcoleptic canines is significantly elevated. In the present study we have investigated the effects of cholinergic drugs administered directly into the pontine reticular formation on cataplex...

متن کامل

Histamine Transmission Modulates the Phenotype of Murine Narcolepsy Caused by Orexin Neuron Deficiency

Narcolepsy type 1 is associated with loss of orexin neurons, sleep-wake derangements, cataplexy, and a wide spectrum of alterations in other physiological functions, including energy balance, cardiovascular, and respiratory control. It is unclear which narcolepsy signs are directly related to the lack of orexin neurons or are instead modulated by dysfunction of other neurotransmitter systems ph...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013